LeoA, B and C from Enterotoxigenic Escherichia coli (ETEC) Are Bacterial Dynamins
نویسندگان
چکیده
Escherichia coli (ETEC) strain H10407 contains a GTPase virulence factor, LeoA, which is encoded on a pathogenicity island and has been shown to enhance toxin release, potentially through vesicle secretion. By sequence comparisons and X-ray structure determination we now identify LeoA as a bacterial dynamin-like protein (DLP). Proteins of the dynamin family remodel membranes and were once thought to be restricted to eukaryotes. In ETEC H10407 LeoA localises to the periplasm where it forms a punctate localisation pattern. Bioinformatic analyses of leoA and the two upstream genes leoB and leoC suggest that LeoA works in concert with a second dynamin-like protein, made up of LeoB and LeoC. Disruption of the leoAB genes leads to a reduction in secretion of periplasmic Tat-GFP and outer membrane OmpA. Our data suggest a role for LeoABC dynamin-like proteins in potentiating virulence through membrane vesicle associated toxin secretion.
منابع مشابه
Biochemical characterization of the enterotoxigenic Escherichia coli LeoA protein.
Enterotoxigenic Escherichia coli (ETEC) causes enterotoxin-induced diarrhoea and significant mortality. The molecular mechanisms underlying how the heat-labile enterotoxin (LT) is secreted during infection are poorly understood. ETEC produce outer-membrane vesicles (OMVs) containing LT that are endocytosed into host cells. Although OMV production and protein content may be a regulated component...
متن کاملEnterotoxigenic Escherichia coli infection induces tight junction proteins expression in mice
Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in travelers, young children and piglets, but the precise pathogenesis of ETEC induced diarrhea is not fully known. Recent investigations have shown that tight junction (TJ) proteins and aquaporin 3 (AQP 3) are contributing factors in bacterial diarrhea. In this study, using immunoblotting and immunohistochemistry analyses, we found that E...
متن کاملIdentification of a gene within a pathogenicity island of enterotoxigenic Escherichia coli H10407 required for maximal secretion of the heat-labile enterotoxin.
Studies of the pathogenesis of enterotoxigenic Escherichia coli (ETEC) have largely centered on extrachromosomal determinants of virulence, in particular the plasmid-encoded heat-labile (LT) and heat-stable enterotoxins and the colonization factor antigens. ETEC causes illnesses that range from mild diarrhea to severe cholera-like disease. These differences in disease severity are not readily a...
متن کاملImmunogenicity of enterotoxigenic Escherichia coli outer membrane vesicles encapsulated in chitosan nanoparticles
Objective(s): Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease in humans, particularly in children under 5 years and travelers in developing countries. To our knowledge, no vaccine is licensed yet to protect against ETEC infection. Like many Gram-negative pathogens, ETEC can secrete outer membrane vesicles (OMVs). These structures contain various immunogenic vi...
متن کاملImmunogenic Evaluation of Bivalent Vaccine Candidate against Enterohemorrhagic and Enterotoxigenic Escherichia coli
Background: Caused by bacterial, viral, and parasitic pathogens, diarrhea is the second leading cause of death among children under five. Two strains of E. coli, namely Enterotoxigenic, ETEC and Enterohemorrhagic EHEC are the most important causes of this disease in developing countries. EHEC is a major causative agent of bloody diarrhea and hemorrhag...
متن کامل